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Analytic solutions for three- and four-wave mixing via 
generalised Bose operators 

Jacob Katrielt and David G Hummer$ 
Joint Institute for Laboratory Astrophysics, National Bureau of Standards and University 
of Colorado, Boulder, Colorado 80309 USA 

Received 26 March 1980, in final form 3 December 1980 

Abstract. New types of generalised Bose operators are constructed. They are applied to the 
linearisation of the equations of motion describing three- and four-wave mixing, resulting in 
integral equations for the temporal behaviour of the various fields. Some mathematical 
properties of these integral equations are studied, thus establishing the equivalence between 
approaches differing in the manner in which the linearisation is carried out. The integral 
equations are solved analytically in terms of Jacobian elliptic functions. 

1. Introduction 

The construction of generalised Bose operators which satisfy boson commutation 
relations but which, when acting on the states of some more fundamental bosons, create 
or destroy several of them simultaneously, has been undertaken by Brandt and 
Greenberg (1969). The possibility of simplifying the treatment of second harmonic 
generation (Katriel 197 1) and of the anharmonicity in one-dimensional oscillators 
(Rasetti 1972) using these operators was considered some time ago. Rasetti (1972) also 
derived a closed form expression for the generalised Bose operators, which, apart from 
certain phase factors which are discussed below, is equivalent to the normal ordered 
infinite series of Brandt and Greenberg (1969). The relevance of these operators to the 
study of the dynamical symmetry groups of anisotropic multi-dimensional harmonic 
oscillators was clarified by the demonstration (Katriel and Adam 1971) that they are 
actually equivalent to the operators introduced by Demkov (1963) in that context. They 
were independently introduced in a study of the anisotropic oscillator by Louck et a1 
(1973), in a form identical to that of Rasetti (1972). 

We shall now consider the construction of two types of even more general Bose 
operators, simultaneously affecting the occupancy of different boson modes. Such 
operators will be presented and their applicability demonstrated in the context of 
nonlinear optics. They can also be useful in other contexts, such as the treatment of 
coupled anharmonic oscillators, which we shall not consider in detail. 

To motivate some aspects of the introduction of the generalised Bose operators for 
different modes, we first reconsider the single-mode generalised Bose operators. This 
will give us an opportunity to improve on and define the limits of validity of some 
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previous results. The most interesting new result with respect to the treatment of 
second harmonic generation using the single-mode generalised Bose operators is the 
derivation and solution of an integral equation for the temporal behaviour of the first 
and second harmonic fields. 

We then construct generalised Bose operators creating an arbitrary number of 
different bosons. This is followed by the application of a combination of the Holstein- 
Primakoff and Schwinger relations to construct a class of generalised Bose operators, 
which simultaneously create a boson of one type and destroy a boson of a different type. 
The application of these operators to the linearisation of the sum-frequency generation 
Hamiltonian results in integral equations for the number of sum-frequency photons, 
whose forms depend on the manner in which the linearisation is carried out, but which 
are shown to have unique solutions, expressible in terms of Jacobian elliptic functions. 

The linearisation of Hamiltonians describing four-wave mixing is considered in the 
last section. The various different approaches, consisting of using different types of 
generalised Bose operators, are shown to result in integral equations which form 
natural generalisations of those obtained for three-wave mixing. The equivalence of 
the different linearisation procedures is established and analytic solutions, in terms of 
elliptic functions, are presented. 

2. Single-mode generalised Bose operators; second harmonic generation 

Let 
A = F(n*)a2, A+ = (U ' )~F* ( ; ) ,  

where n* = a+u, and require that [A, A+] = 1.  One obtains, using the fact that a F ( 6 )  = 
F(n* + l)a,  the following identity: 

IF(n)12(n+l)(n+2)-1F(n - 2 ) I 2 n ( n - 1 ) =  I .  ( 2 )  

lF(n)l2= 1 / [ 2 n  + 3 - ( - l ) " ] .  ( 3 )  

It is easy to see that iF(0)l2 = and IF(1)l2 = i .  One can then prove by induction that 

Using Wilcox's (1967) normal ordering expansion formula, one immediately obtains A 
in the infinite series form derived by Brandt and Greenberg (1969).  In the applications 
we shall assume that F ( n )  is real, which is equivalent to assuming that all the phases in 
the form of the generalised Bose operators given by Brandt and Greenberg vanish. 

Using the generalised Bose operators in the form of equation ( l ) ,  we can improve on 
a result given some time ago by one of the present authors (Katriel 1971) for the 
Hamiltonian 

X= hwa+u +h2ob'b + h & [ b + a 2 + ( ~ + ) 2 b ] ,  (4) 

describing second harmonic generation. Writing u 2  = [ l / F ( n * ) ] A ,  ( a + ) 2  = A + [ l / F ( n * ) ] ,  
we obtain the Hamiltonian 

Assuming that F ( 6 )  can be treated as a constant, and following the steps of Katriel 
(1971),  we obtain 

nz(t )  = ( n / 2 )  sin2(Et) ( 6 )  
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where E' = e /F (n )  = ~(2n) ' / ' ,  n is the number of w-frequency photons initially and 
n2( t )  is the number of second harmonic photons. 

This result suggests an oscillatory behaviour of the population in the second 
harmonic mode, with a- time period of T -- 'IT/[& ( 2 r ~ ) ' / ~ ]  compared with a period 
proportional to ln(n) /Jn,  obtained in an approximate quantum mechanical compu- 
tation by Walls (1970). However, the present treatment can only be valid quantitatively 
as long as 112 << n/2, i.e. for t K T. For such short times it gives n 2  -- n e t , in agreement 
with Walls and Tindle (1971, 1972). Moreover, the short-time form of 

2 2 2  

b+( t )  = e1'2w[b+ cos(kt) +iA' sin(E't)], (7) 

b'(t)  =e'f2W[b'+ii(a+)2et-e2t2b+(2a + 111, (8) 

i.e. 

differs from the expression given by Mista and Perina (1977), who have treated the 
exact equations of motion in a short-time approximation, only in the fact that 2, + 1 in 
the last term should be replaced by 22, + 1. 

To improve the model further we have to account for the fact that 2 in F ( 2 )  is not a 
constant. Substituting n ( t )  for 2, we obtain the following explicitly time-dependent 
Hamiltonian, 

X= 2 h w ( A ' A + b C b ) + h e { 2 [ n ( t ) + 1 ] } ' / 2 ( b ' A + A ' b ) .  (9) 

x = h[2@ + E{2[n ( t )  + i ] } 1 / 2 ~ x + x  + ~ 1 2 ~  - 4 2 ~ ~  ( t )  + i ~ } l / ~ ]  Y +  Y. 

Introducing X + =  (b++A')/JZ, Y' = ( b + - A ' ) / h ,  the Hamiltonian becomes 

(10) 

From the equation of motion 

i h k  = [x, zip] = h12w + e{2[n(t) + i]}'/*]x 

we obtain 

2wt + E &  lof ( n  ( t )  + 1)l" df)] (12) 

and a similar expression for Y( t ) .  Finally, 

b ~ ( t ) = e ' 2 " ' [ ~ ~ c o s ( E * i ~ ~ o ' ( ~ ( t ) + l j ' ~ 2 d t )  + i A + ~ i n ( e v ' T / ~ '  (n(t)+1)1/2dt)]  (13) 

and 

nz(t) = (nib'(t)b(t)ln) = (n/2) sin2 (14) 

Hence the following integral equation is obtained for n ( t ) :  

The solution of this equation is shown in appendix 1 to be 

n ( t )  = n cn2{e[2(n + ~ ) ] ' " t ~ n / ( ~  + n) ) .  

This result is almost identical to that given by Walls (1970), who used an approximation 
due to Bonifacio and Preparata (1970). It is, however, worthwhile noticing that 
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equation (15) is very convenient for a numerical evaluation of n ( t ) .  Moreover, the 
integral equation very transparently exhibits some of the qualitative features of the 
solution, which were derived by Walls (1970) from his analogue of equation (16). These 
include the fact that n ( t )  varies periodically between n and zero, and that the system 
spends most of its time with n ( t )  close to zero, which means that the second harmonic 
field, once generated, transforms to the original field at a considerably slower rate than 
its rate of formation. The time ( T )  that it takes for half of the second harmonic photons 
to be generated is in good agreement with the expression obtained by assuming that 
~(6) is a constant, i.e. 4&7 --- r/(2n)'/ '. 

Second harmonic generation was treated classically, via Maxwell's equations, by 
Armstrong et a1 (1962). Their result can be obtained by making the approximation 
YE + 1 --- n, as a consequence of which equation (16) reduces to 

n ( t )  = n cn'[s 12n)'/2tll] = n sech2(& (2n)"2t), 

which is a monotonically decreasing function of t. The difference between the classical 
and quantum mechanical results can be interpreted by noting that quantum mechanic- 
ally at least zero point vibrations of both the fundamental and second harmonic waves 
always exist, which implies that the classical initial conditions are not quite realised. 
This difference demonstrates that the present treatment retains the essential quantum 
mechanical features of the problem, while at the same time it achieves an almost 
classical mathematical simplicity. The same remarks apply to the treatment of further 
nonlinear phenomena, and will not be repeated. 

The generalisation to boson operators involving k bosons 

(17) + k  * A'k' = Fk (??)a k ,  A'"'= ( a  ) Fk ( G ) ,  

is straightforward. From the commutation relation [A'k', A'"'] = 1 we obtain the 
identity 

lFk(n)I'(n + k ) ! / n ! - I F k ( n - - ) j 2 n ! / ( n  -k)!= 1, 

which can be used to prove by induction that 

IFk(n)1'=([n/k]+  1 ) n ! / ( n  +k)! (18) 

where [XI is the largest integer smaller than x .  Again, equivalence with the form derived 
by Brandt and Greenberg (1969) is easily established. 

Equation (18) was derived by Rasetti (1972), who obtained it without the absolute 
value sign. This means that his result corresponds to the assumption that all the phases 
present in the Brandt and Greenberg form of the generalised Bose operator vanish. 

3. Generalised Bose operators for different modes: sum-frequency generation 

An even more interesting result will now be derived for the pair of operators 

C = F(&,  &)ab, c' = b+a'F*(n^,, i b ) ,  (19) 

where a and b are boson operators for two different types of bosons and &, f i b  are the 
corresponding number operators. For a proper choice of F(&, A b )  the operators C and 
C' satisfy a boson commutation relation, but can be considered as destruction and 
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creation operators for a pair of different bosons. From the requirement [C, C'] = 1 we 
obtain 

(20) IF(na, nb)I2(n, + I)(nb + I )  - iF(na - 1, - 1)I2nanb = 1. 

IF(na, nb)I2= l / ( n > + l )  (21) 

One can show by induction that 

where n ,  = max(na, nb). 
The expressions for C and C' as normal ordered expansions in a+,  a,  6' and b can 

be obtained by a straightforward double application of Wilcox's (1967) formula. 
The operators C and C' seem to be particularly useful and appealing when a and b 

are two modes which interact nonlinearly, but the intensity of one of them is much 
higher than that of the other. In  this case the higher-intensity mode can be assumed to 
be almost unaffected by the interaction. Consequently, F(&,  & ) ,  which depends only 
on this higher-intensity mode, can be treated as a constant. This results in a consider- 
able simplification of the problem, as will be demonstrated in detail. 

Consider the Hamiltonian (Gambini 1977, and references therein) 

%= h w a a f u  +hwbb+b+hwcc'c+he(c+ab + a c b f c )  (22) 

where w, = w, + W b ,  describing sum-frequency generation. Notice that 

a+aln,, nb)=&Ina, ab), b+bIna, nb)=nblna, n b )  

and 

c + c I n , ,  ab) = b+U+lF(;a, kb)12Ublna, nb) 

= (nanb/n>)lna, nb) = n<Ina, ab), 

As 6, - n^b is a constant of the motion we can write, assuming that a is the higher- 
intensity mode, 

b'b = C'C, a+a = no+C+C, 

where no is the difference in the number of photons in the two modes. Hence 

1 
2 = hw,no + hw, (C'C + c +c ) + he c + c+c+ 

F(fia, A b )  

Subject to the assumption that n, >>ab, which is the situation usually encountered in 
practice (Mista and Perina 1977), we can write 

2' = hwc(C+C+c'C)+hE(c+c+ C + C )  (24) 
where 6 = e / F  -- F JG, and where the constant term b a n o  has been dropped. From the 
Heisenberg equation of motion we obtain 

c'(t)  = eiwcr[C+i sin(;[) + c' cos(~"t)]. (25) 
The number of photons with the sum frequency is given by 

(26) 
2 N c ( t ) = ( n a ,  fiblC+(t)C(t)lna, nb)=s in  (Et)n<, 

exhibiting oscillations with a periodicity T = v1.G = v / ( e & ) .  
Solving the exact equations of motion numerically, Walls and Barakat (1970) 

obtained an oscillatory behaviour of the number of sum-frequency photons for n, >> nb. 
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A period of -O.Sl/e can be estimated from their plot for n, = 50, a b  = 24, compared 
with -0.44/e obtained in our treatment. Actually, by taking for na the average 
between its maximum value of SO and its minimum value of 26, we obtain the 
recurrence time -0.507/&, in very close agreement with Walls and Barakat (1970). 

For times which are short relative to T, the above result should hold even if the 
intensities in the two modes do not differ considerably, simply because only a small 
fraction of the photons has been depleted by the interaction. Under such conditions 

(27) 

This result differs from that given by Agrawal and Mehta (1974) on the basis of a 
short-time treatment of the exact equations of motion only by the fact that the factor 
( n > +  1) in the third term has to be substituted by (n>+n,+ 1). If n,<c n ,  the two 
treatments become identical at short times but the present one, in its unexpanded form, 
is valid for longer times as well. 

If we replace A, in equation (23) by n a ( t ) ,  the following integral equation can be 
derived for n,(t), 

c+(t)  =e'""[c++ iet6'a'- (e2t2/2)c+(n, + I)]. 

(28) 

This equation can be solved in a manner similar to equation ( l S ) ,  obtaining 
- 

n,(t) = n, -nb sn2[eJnatI(nb/n,)l. (29) 

This result is very similar to that obtained for an equivalent problem by Bonifacio and 
Preparata (1970). Again the integral equation, equation (28), is very convenient for 
numerical evaluation of n ( t )  as well as for analysing its qualitative properties. It fol1o.w 
very transparently from equation (28) that n, ( t )  is periodic, spending more time in 
states with close to minimal numbers of a (and 6)  type photons, than in states in which 
the c field intensity is close to minimal. 

Using the integral equation, one can generate the expansion of n,(t) in powers of t 2 ,  
obtaining 

n , ( t )=n , - e  n,nbt + e  n,nb(n, +nb) t4 /3 -e6nanb(13n ,nb+2n~  +2n:)t6/4s 2 2 4  

+ F x n a n b [ n ~ + n ~ + 3 0 n , n b ( n , + n b ) ] t 8 / 3 1 ~ - .  . . . (30) 

The first two terms in this expansion are identical to the exact results of Scharf (1974), 
and the other three differ from his by quantities which are of the order of l /n ,  (or l/nbj. 

4. Generalised Bose operators for several differcmt modes 

Whereas the single-mode generalised Bose operators were constructed both by Brandt 
and Greenberg (1969) and by Rasetti (1972) so as to create an arbitrary number of 
bosons, the different modes operators introduced in 8 3 referred to two bosons only. 
However, the generalisation to an arbitrary number of different bosons is straightfor- 
ward. 

Consider the product a 'btct. Introducing the two-mode generalised Bose operator 

C' = atbt[max(n,, n b )  + I]-*" (31) 
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we obtain 

a tb t c t  = Ctct[max(n,, ab)+ I]"*. 

Using the two-mode reduction with respect to C tc t ,  we obtain 

xt = Ctct[max(n,, nc)  + 
However, from equation (31) it follows that 

n c  = min(n,, n6). 

Hence 

xt = atbtci{[max(A,, Ab)+ ~ ] [ m a x ( ~ , ,  min(A,, ~ b ) )  + II}-'~*. 

It is easy to show that the coefficient can easily be written in a more symmetrical form, so 
that finally 

One can similarly derive the generalised Bose operator creating four different modes, 

The generalisation to an arbitrary number of different bosons is now obvious. The 
commutation relation [ Y, Y'] = 1 is easily verified. 

5. An additional type of generalised Bose operator 

A representation of angular momentum operators by means of products of a boson 
creation operator and a boson destruction operator was constructed by Schwinger 
(1965). His relation is 

a'b = J,, b'a = J-, (A, - db)/2 = J Z .  

A relation between angular momentum operators and a single boson operator was 
constructed by Holstein and Primakoff (1940), who showed that 

(34) 1 i 2  J+ = (2J  - A c )  C. 

Combining these relations, we obtain 

a tb  = (25 - A,)1'2c 

and 

bta  = ~ ' ( 2 J - f i ~ ) ' ' ~ .  

Using Schwinger's relation, it is easy to see that 

j 2  = (A/2)(li/2 + 1) 

where 

n = A, + Ab. 

(35) 
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This result indicates that the angular momentum quantum number J,  in terms of which 
the eigenvalue of j 2  is J ( J  + l), is given by J = (n ,  + nb)/2.  Note that n  ̂ commutes with 
a ' b  and bia,  and therefore is a constant of the motion. 

From equation (35) it follows that the state with the maximum value of n,, which is 
according to equation (34) equal to 2 J  = n, +ab, corresponds to n, = 0 and a maximum 
value of n b ,  i.e. nb = 2J. The possible values of n, are 

n, = 0,1, . . . , ( n ,  + nb)  

and from the correspondence between n, = 2J and a b  = 2J and equation (35) it follows 
that for all states n, = ab. 

6. Equivalence between different treatments of three-wave mixing 

The Hamiltonian describing sum-frequency generation, equation (22),  was studied in 
5 3 using the two-mode generalised Bose operator Ct = a t b t / ( n ,  + 1)'". 

We can now consider linearising this Hamiltonian by means of the generalised Bose 
operators related to either c t a  or c'b. Using the former, we obtain a result which is 
identical to equation (28).  However, using the latter we obtain 

n,(t)  = n, sin'(. j o t [nb  -n,(t)1'/2 dt). (36) 

From the result in § 3, it follows that the solution of (28) can be written as 
- 

n,(t)  = nb sn2(EJn,t I n b / n a ) .  

n,(t)  = n ,  sn*(sJnbt/n,/nb). (38) 

(37) 

Similarly, the solution of (36) is 
- 

The equivalence between (37) and (38) follows from Jacobi's real transformation 
(Abramowitz and Stegun 1967). A somewhat subtle aspect of the equivalence between 
equations (28)  and (36) is discussed in appendix 2. 

7. Four-wave mixing 

In view of the large variety of different four-wave phenomena we shall treat only two 
representative cases in detail, so as to exhibit the main features of the linearisation of 
the corresponding Hamiltonians in terms of the generalised Bose operators, and of the 
analytic solution of the resulting integral equations. 

The Hamiltonian 

can be reduced in several different ways, using different forms of generalised Bose 
operators. Let us consider the initial conditions n1 > n2 > 0, n3 = n4 = 0, and let 

a l a :  = ~'(6~ -t I)'", u : u i  = D'(n^s + 1)''*. 
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Following the steps of the derivation in § 3, we obtain 

The solution of this equation is shown in appendix 1 to be 

n 2 ( t )  = n2(n2+ 1) cn2(t/.r I k2)/[1 + n2 cn2(t/r  I k2)], 

7 = E- ' [ (n l  + 1) (n2+  

(41) 

where 

(42) 
and 

n2 n 1 + 2  
n2+1 n 1 + l  

k2=--, (43) 

A Hamiltonian which is closely related to that given by equation (39) describes the 
recently extensively studied process of CARS (for a recent review see Swofford and 
Albrecht 1978). 

Let the interaction be 

(44) t t 2  x = h E [ ( a : ) 2 a 2 b + a 2 b  a l l  

and the initial conditions 

n l >  0 ,  n2>0, nb = 0. 

Linearisation of this Hamiltonian is achieved with 

A t  = ( ~ : ) ~ [ 2 ( n ~  + l)]-li2, Bt = a;bt(n2+ p 2 ,  

and the integral equation finally obtained is 

The equation is solved in the same way as was equation (41) to obtain 

nl(r)  = n1(2n2-2+nl)  cn2(t /r1k2)/[nl  cn2( t /~Ik2)+2n2-2] ,  (46) 

A second major group of four-wave phenomena is described by the Hamiltonian 
4 

t t t  %'= hwiatai  + A ~ ( a ~ u ~ a ~ a ~ + a ~ a ~ a ~ a ~ ) .  
j =  1 

For the initial conditions 

n l = 0 ,  0 < n2 G n3 S n4, 

A t =  [n3( t )  n 4 ( t ) ] - -  a2u3a4 

we linearise by means of 
1 / 2  t t t 

(49) 
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and obtain 

Alternatively, we linearise by means of 

obtaining 

The discussion in appendix 2 shows that (50) and (51) are equivalent, provided that 
the sign of the square root in the integrand is properly chosen. Equation (51) is solved 
by the method outlined in appendix 1 to obtain 

n l ( t )  = n2 sn2(t/, 1 k2)/[1 - (n2/n4) cn2(t/7 1 k 2 ) ] ,  (52) 

( 5 3 )  

k = (n4 - fi3)n2/ (n4 - n2)n3. (54) 

where 
-1 

T = & [(n4 - ? ~ 2 ) ? I 3 ] - ” ~  

and 

8. Discussion 

The application of the single-mode and diff erent-modes generalised Bose operators to 
nonlinear optics has been demonstrated to result in a very significant mathematical 
simplification, as well as a very transparent physical interpretation of each stage of the 
treatment. It also yields useful and convenient forms of the results, such as the integral 
equations for the intensities of the different frequency fields. It is particularly note- 
worthy that the application of generalised Bose operators results in a treatment of four- 
(and, in principle, higher-) wave mixing in a manner which is an obvious generalisation 
of that for three-wave mixing, without major new difficulties. We note that in all cases 
some arbitrariness exists because of relations such as 

( 5 5 )  

Clearly, in most cases of interest n> >> 1 and no real problem arises. Otherwise, it may 
be reasonable, when introducing the approximation n^, = n>(r), to write 

-1/2 t t a+bt(n^>+1)-”2=(n^>) a b . 

a T b T =  C+[n,(t)+;]”2, 

which corresponds to taking an intermediate value between the two forms resulting 
from equation ( 5 5 ) .  

It may be of interest to consider the possibility of improving on the present results by 
treating quantities such as n̂  - n( t )  as perturbations. From a physical point of view the 
most important next step would be the introduction of loss mechanisms within the 
framework of the generalised Bose operators, so as to allow damping of the oscillations 
we have so far been considering. The temporal (or spatial, along the optical path) 
intensity modulations predicted for four-wave mixing will, we hope, be confirmed by 
the rapidly developing four-wave spectroscopy. 
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Equation (15) can be solved by rewriting it in the form 

n ( t )  = no cos2 ~ ( t )  

where 

O ( t )  = f i  ( n ( t ’ ) +  1)1’2 dt’. r: 
Differentiating (Al .2)  and substituting (Al . l ) ,  we obtain 

dt = de/ [ f i ( l+  no)ll2{1 - [ (no/ ( l  + n o ) ]  sin2 O}1’2]. 

Integrating (A1.3), we obtain 

f i ( l + n o ) 1 / 2 t =  de’/{l-[no/(1+no)]sin2 i,: 
or (Abramowitz and Stegun 1967) 

cn [p ( l+  no)ll2t 1 n o / ( 1  + n o ) ]  = cos e, 
i.e. 

n ( t )  = no cn2[fi (1 + no)1’2t j no / ( l+  no)], 

( A l . l )  

(A1.2) 

(A1.3) 

(A1.4) 

(Al .5)  

where cn(x 1 m )  is the Jacobian elliptic function. From the known periodicity of elliptic 
functions, we see that n ( t )  has the period 

p = 2 ~ [ n ~ / ( 1 +  no)]/e(l  + no)1’2, (A1.6) 

where 

is the complete elliptic integral of the first kind. 

it as 
Equation (41) for four-wave mixing can be solved in much the same way, by writing 

n2( t )  = n2 cos2[e(tj] (A1.7) 

where 

O ( t ) = E  I ‘d t ’  [(n2(t’)+S+1)(1+n2-n2(t’))]1’2.  
0 

Wehavedefined 

S = n l - n 2 ( > 1 ) .  

(A1.8) 

(A1.9) 

Differentiating (A1.8) with respect to t ,  substituting (Al .7)  and then integrating, we 
obtain 
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This integral can be reduced to an elliptic integral by the transformation 

sin 4 = [ ( a 2  + 1)u/(un2 + I ) ]”*;  ( A l . l l )  
we obtain 

d d / ( l -  k 2  sin2 4)1’2 = F ( 4 ]  I k2)  

where 
T=E-’[ ( l+n,+6)( l+n, )] -1’2 ,  

( A l .  12) 

( A l .  13) 

(A1.14) 

and sin q51 is obtained by setting U = sin2 8 in ( A l . l l )  (cf Grobner and Hofreiter (1965) 
for details). From the second expression in ( A l .  14) we see that k 2  d 1. From ( A l .  12) 
we have directly 

sn(t/r  1 k2)  =sin d1 = [ (n2+ 1) sin28/(n2 sin28 + 1)]’12. (A1.15) 

Solving for sin2 8 and substituting the resulting expression in (A1.7), we obtain the 
solution 

n2(t)  = n 2 ( n 2 + 1 )  c n 2 ( t / . r ~ k 2 ) / [ 1 + n 2 c n 2 ( t / ~ I k 2 ) ] .  ( A l .  16)  

The period of n2( t )  is 

p = 2rK(k2). ( A l .  17) 

Appendix 2. 

Consider the integral equation 

f ( t )  = a sin2( [“‘[b -f(t)]’”F[t, f c t ) ]  sgn( $) dt) (A2.1) 

where a and b are real and positive constants, F[t ,  f ( t ) ]  is positive definite but otherwise 
arbitrary, and 

1, x 2 0  
L l ,  x<o. sgn(x) = 

Differentiating with respect to t, we obtain 

df/dt = 2a sin{. . .} cos{. . .}[b - f ( t )]’ /2F[t ,  f ( t ) ]  sgn(df/dt) 

which, using (A2. l), becomes 

df/dt = 2[f(t)lli2{[a - f ( t ) l [ b  -f(t)ll’/2F[t, f@)l sgn(df/dt). (A2.2) 
Equation (A2.2) is symmetrical with respect to interchange of a and b. To show that 
equation (A2.1) is also symmetrical with respect to interchange of a and 6, all that has to 
be pointed out is that this interchange does not affect the initial condition f(0) = 0. 

If a d b, it is clear that f ( t )  increases from 0 to a while t increases from 0 to T, where 
c I,’ [b -f(t)]”’F[t, f ( t ) ]  dt  = ~ / 2 .  (A2.3) 
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The factor sgn(df/dt) = 1 in this range and was therefore suppressed in equation (A2.3). 
For T < t < 2T, f ( t )  decreases and equation (A2:l) can be written in the form 

f ( t )  = a sin2( 5- J:, , , dt) = a sin2( ;+ Ji. ~ . dt), 

which shows that the factor sgn(df/dt) is redundant in this range as well. 

argument is, at t = T (where f ( t )  obtains its maximum value of U ) ,  

However, if we interchange a and b the value of the integral now appearing as the 

7T 
JOT [ a  - f ( t ) ~ ” ~ ~ [ t ,  f ( t ) l  dt = sin-’(a/b) < -, 

2 

Clearly, the factor sgn(df/dt) is not redundant, tor T < t < 2T, in this case. This factor 
guarantees that the square root in the integrand is correctly continued beyond the point 
t = T, at which it vanishes. 

In the special case studied in § 6, i.e. F[t,  f ( t ) ]  = 1, the phase factor sgn(df/dt) was 
not included, yet equivalence with respect to interchange of a and b was established. 
This is a consequence of the fact that the Jacobian elliptic functions, whose properties 
were used in that context, guarantee that the correct analytic continuation is made. 
Introducing that factor explicitly in equation (38) (with n, > nb) ,  we obtain 

When this equation is solved as in appendix 1 we get 

n, ( t )  = n, sn2[ E ( n b ) 1 / 2  IOt sgn/%) dt I n,/nb]. (A2.4) 

Now, fo rO<t<T,  

JOr sgn( 2) dt = t, 

so that this result reduces, as it should, to equation (40). For T < t < 2 T  

IOr sgn( 2) dt = T - ( t  - T )  = 2 T - t 

for which equation (A2.4) does not look identical to (40), but is in fact identical to it due 
to the periodicity properties of the Jacobian function. 

As a practical recommendation it seems desirable to choose the smaller of a and b to 
be the coefficient in front of the sin2{. . .} in equation (A2.1). This allows us to drop the 
phase factor sgn(df/dt) in the integrand and also results in an equation which can be 
more accurately numerically integrated because the integrand varies within narrower 
limits than with the other choice of parameter ordering. 

It may further be noted that by integrating equation (A2.2) we obtain 

(A2.5) 

This is also an integral equation for f ( t ) ,  which may have certain practical advantages 
over equation (A.2.1). For one, it enables a significant simplification in the generation 

df f ( t )  = 2 J ‘ W X ~  -f(t)l[b - f ( t ) l ~ / ~ ~ [ t ,  f(r11 s g n ( z )  dt. 
0 
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of the power series expansion of f ( t ) .  Equation (A2.5) can be transformed into a 
differential equation, which for F[t, f ( t ) ]  = 1 is 

d2f(t)/dt2 = 2ab - 4(a + b)f(t) +6f(t)’ 

with the initial conditions f ( t )  = 0, df/dtlo = 0. Similarly, for F[t, f ( t ) ]  = [c - f ( t ) ]”* ,  
which is of interest in the context of four-wave mixing, we obtain 

d 2 f ( r ) / d t 2 = 2 a b c - 4 ( a b + b c + c a ) f + 6 ( a  + b + c ) f 2 - 8 f 3 ,  

with the same initial conditions. 
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